Geant4: A Simulation Coolkil
O. Stézowski and M. Pinto

With many thanks to the Geant4 community !!!!

The roadmap of the week

WI: installation / running a G4 application

W2: Primary generator, GPS, physics list
w1: 3:00, Monday w2: 3:00, Tuesday w3: 4:30, Wednesday w4: 3:00, Thursday

The
user's
applicalion

Building an application requires to put together 3 mandatory bricks*

the detector construction - the description of the physics - the primary generator

W3: Geometries!

Definition of materials

Definition shapes

All bricks together

Exportation / importation

The user's application

A detector geometry is made of a number of volumes

Requirements to write the method Construct() i.e. the full setup of the simulation

- Construct all necessary materials
- Define shapes/solids
- Define logical volumes
- Place volumes of your detector geometry
- Associate (magnetic) field to geometry (optional)
- Instantiate sensitive detectors/scorers, set them some logical volumes (optional)
- Define visualization attributes for the detector elements (optional)
- Define regions (optional)

Not covered
in this lecture

Not covered in this lecture

Geant 4 defines two kind of volume

a G4LogicalVolume is used to keep the characteristics of a volume a G4VPhysicalVolume is used to place (translation, rotation)
a logical volume with respect to a mother volume.

- There is a top volume which is called the World Volume !

mother referential

The Construct method of G4VUserDetectorConstruction returns a G4VPhysicalVolume, the world

Geant 4 defines two kind of volume

a G4LogicalVolume is used to keep the characteristics of a volume a G4VPhysicalVolume is used to place (translation, rotation)
a logical volume with respect to a mother volume.

* There is a top volume which is called the World Volume !

mother referential

The Construct method of G4VUserDetectorConstruction returns a G4VPhysicalVolume, the world

W3: Geometries !

Construct all necessary makerials

Different kinds of materials can be defined:

- isotopes \leadsto G4Isotope
- elements - G4Element
\bullet molecules \leftrightarrows G4Material
- compounds and mixtures - G4Material
\Leftrightarrow Attributes associated: temperature, pressure, state, density
- G4Isotope and G4Element describe microscopic properties of the atoms:
\Rightarrow Atomic number, number of nucleons, mass of a mole, shell energies, cross-sections per atoms ...
- G4Material describes the macroscopic properties of the matter:
\Rightarrow temperature, pressure, state, density
\Rightarrow Radiation length, absorption length, etc...
- G4Material is the only class used and visible to the toolkit:
\Leftrightarrow it is used by tracking, geometry and physics

Conslruck all necessary makerials

Isotopes can be assembled into ...

G4Isotope (const G4String\& name, G4int z , /* atomic number */
 G4int $\quad n, \quad / *$ number of nucleons */
 G4double a); /*mass of mole*/

G4element (const G4String\& name, const G4String\& symbol, /*element symbol*/ G4int nIso); /*n. of isotopes*/

[^0]... elements

Construct all necessary materials

composition of compound materials

elements into materials

single element material

density = 2.7*g/cm3;
a = 26.98*g/mole;
G4Material *al = new G4Material(name="Aluminium",z=13., a, density);

Example of materials filled with gas

density = 27.0*mg/cm3;
temperature $=325 . *$ kelvin;
pressure = 50.*atmosphere;
G4Material *co2 =
new G4Material(name="CarbonicGas", density,nel,
kStateGas,temperature, pressure);
co2->AddElement(c, natoms = 1);
co2->AddElement (o, natoms = 2);
atomicNumber = 1.;
massOfMole $=1.008 * g / m o l e ;$
density $=1$. $\mathrm{e}-25 * \mathrm{~g} / \mathrm{cm} 3$;
temperature $=2.73 *$ kelvin
pressure = 3.e-18*pascal;
G4Material *vacuum =
new G4Material(name="interGalactic"
atomicNumber,massOfMolde, density,nel, kStateGas,temperature, pressure);
absolute vacuum does not exist ! Gaz at very low pressure

A material made of several elements
 (composition by of mass)

a=14.01*g/mole;
G4Element $* n=$ new G4Element (name="Nitrogen", symbol="N", z=7. a) ; $\mathrm{a}=16.00 * \mathrm{~g} / \mathrm{mole}$
G4Element *o = new G4Element(name="0xygen",symbol="0",z=8.,a);
density $=1.29 * m g / \mathrm{cm} 3$;
nel = 2;
G4Material *air = new G4Material(name="Air",density,nel); mix->AddElement(n, 0.7); mix \rightarrow AddElement (o, 0.3);

Construct all necessary makerials

Geant4 provides defaults based on the NIST database*

Z	Name	density(g/cm	$\mathrm{I}(\mathrm{eV})$
1	G4_H	8.3748e-05	19.2
2	G4_He	0.000166322	41.8
3	G4_Li	0.534	40
4	G4_Be	1.848	63.7
5	G4_B	2.37	76
6	G4_C	2	81
7	G4_N	0.0011652	82
8	G4_0	0.00133151	95
9	G4_F'	0.00158029	115
10	G4_Ne	0.000838505	137
11	G4_Na	0.971	149
12	G4_Mg	1.74	156
13	G4_Al	2.699	166
14	G4_Si	2.33	173
15	G4_P	2.2	173
16	G4 _S	2	180
17	G4_Cl	0.00299473	174
18	G4_Ar	0.00166201	188

Many elements defined

Many materials provided
natural isotope compositions more than 3000 isotope masses

G4NistManager* man = G4NistManager::Instance(); G4Material *air = man $>$ FindOrBuildMaterial("G4_AIR");

G4
/material/nist/printElement /material/nist/listMaterials

W3: Geometries !

$G 4 V$ Solid to define the shape

All kind of shapes in G4 inherits from G4VSolid
It does not include the material
There are different ways to define a 3D shape

- CSG (Constructed Solid Geometry) solids G4Box, G4Tubs, G4Cons, G4Trd, ...
- Specific solids (CSG like)

G4Polycone, G4Polyhedra, G4Hype, ...

- BREP (Boundary REPresented) solids G4BREPSolidPolycone, G4BSplineSurface, ... Any order surface
- Boolean solids

G4UnionSolid, G4SubtractionSolid, ...

$G 4 V$ solid to define the shape

Constructed Solid Geometry (CSG) Solids

http:/ / geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch04.html\#sect.Geom.Solids

$G 4 V$ solid to define the shape

Constructed Solid Geometry (CSG) Solids

http:/ / geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch04.html\#sect.Geom.Solids

$G 4 V$ solid to define the shape

Constructed Solid Geometry (CSG) Solids

G4ExtrudedSolid(const G4String\& pName,

$$
\begin{aligned}
& \text { std: : vector<G4TwoVector> polygon, } \\
& \text { std: : vector<ZSection> zsections) }
\end{aligned}
$$

polygon $=\{-30,-30\},\{-30,30\},\{30,30\},\{30,-30\},\{15,-30\},\{15,15\},\{-15,15\},\{-15,-30\}$ zsections $=[-60,\{0,30\}, 0.8],[-15,\{0,-30\}, 1],.[10,\{0,0\}, 0.6],[60,\{0,30\}, 1.2]$

http:/ / geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch04.html\#sect.Geom.Solids

$G 4 V$ solid to define the shape

BREP (Boundary REPresented) Solids

- Listing all its surfaces specifies a solid e.g. 6 planes for a cube
- Surfaces can be
planar, $2^{\text {nd }}$ or higher order
- elementary BREPS

Splines, B-Splines, NURBS (Non-Uniform B-Splines)

- advanced BREPS
- Few elementary BREPS pre-defined
box, cons, tubs, sphere, torus, polycone, polyhedra
- Advanced BREPS built through CAD systems

```
G4BRFPSolidPCone( const G4String& pName,
    G4double start_angle,
    G4double opening_angle,
    G4int num_z_planes, //sections,
    G4double z_start,
    const G4double z_values[],
    const G4double RMIN[],
    const G4double RMAX[] )
```


G4V Solid to define the shape

Boolean Solids

Solids can be combined using boolean operations:

G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

- Requirements: 2 solids, 1 boolean operation, and an (optional) transformation for the $2^{\text {nd }}$ solid
- $2^{\text {nd }}$ solid is positioned relative to the coordinate system of the $1^{\text {st }}$ solid
* Result of boolean operation becomes a solid. Thus the third solid can be combined to the resulting solid of first operation.

Solids to be combined can be either CSG or other Boolean solids.

Note: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent CSG solids

G4Vsolid to define the shape

Boolean Solids

```
G4VSolid* box = new G4Box("Box",50*cm,60*cm,40*cm);
G4VSolid* cylinder = new G4Tubs("Cylinder",0.,50.*cm,50.*cm,0.,2*M_PI*rad);
G4VSolid* union
    = new G4UnionSolid("Box+Cylinder", box, cylinder);
G4ThreeVector T(30.*cm,0.,0.);
G4VSolid* subtract
    = new G4SubtractionSolid("Box-Cylinder", box, cylinder,0, T);
G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4ThreeVector Tr(0.,0.,0.);
G4VSolid* intersect
    = new G4IntersectionSolid("Box&&Cylinder", box, cylinder, rm, Tr);
```

With all the possibilities proposed in Geant4 to build shapes
there are probably several ways to define a complex geometry
\Leftrightarrow be careful if you would like to export it ! [see gdml section]

W3: Geometries !

How to define the World volume

G4NistManager *man = G4NistManager: :Instance(); G4PVPlacement *matWorld = man->FindOrBuildMaterial("G4_AIR");
// use a physical as a container to describe the detector

material

detWorld = new G4Box("BWorld",10.*m,10.*m,50.*m); detlogicWorld = new G4LogicalVolume(detWorld, matWorld, "LWorld", 0, 0, 0);
\measuredangle Logical world is a box made of air ... it is also hidden ...
detlogicWorld->SetVisAttributes(G4VisAttributes::Invisible); // hide the world
// Must place the World Physical volume unrotated at (0,0,0).
thePhysWorld = new G4PVPlacement(0, // no rotation
G4ThreeVector(), // no translation
Place the World,
No mother,
No rotation
No translation

detlogicWorld, // its logical volume

"PWorld", // its name
0, // its mother volume
false, // no boolean operations
-1); // copy number

Adding daughter volumes to the World

- A volume is placed in its mother volume
- Position, rotation of the daughter is described with respect to the local coordinate system of the mother
-The origin of the mother's local coordinate system is at the center of the mother volume
- Daughter volumes cannot protrude from the mother volume, Daughter volumes cannot overlap \Rightarrow User's responsibility to check this, some tools are provided
\bullet graphical widows [hepRApp, Qt]
\rightarrow dedicated commands

```
/geometry/test/run or geometry/test/grid_test
check for overlapping regions based on a standard grid setup, limited to the first depth level
/geometry/test/recursive_test
applies the grid test to all depth levels (may require lots of CPU time!)
/geometry/test/line_test
to shoot a line along a speciffed direction and position
```

/vis/ASCIITree/verbose 11
/vis/drawTree

- The logical volume of mother knows the daughter volumes it contains
* It is uniquely defined to be their mother volume
- One logical volume can be placed more than once. One or more volumes can be placed in a mother volume
- The mother-daughter relationship is an information of G4LogicalVolume
- If the mother volume is placed more than once then all daughters by definition appear in each placed physical volume
- The world volume must be a unique physical volume, it fully contains (with margin) all the other volumes
- The world defines the global coordinate system, which origin is at the center of the world volume
*- Position of a track is given with respect to the global coordinate system

Adding daughter volumes to the World

There are different ways to create physical (placed) volumes

A volume instance positioned once in its mother volume

Daughters of same shape are aligned along one 'axis' Daughters fill the mother completely without gap in between.

Daughters of same shape are aligned along one 'axis' and fill the mother.
There can be gaps between mother wall and outmost daughters.
No gap in between daughters ... G4ReplicatedSlice ...

+ G4AssemblyVolume:

to make snapshot of a complex volume at given position,rotation

+ G4ReflexionFactory:
a pair of volume, useful typically for end-cap calorimeter

Reduction of memory consumption
Currently: parameterization can be used only for volumes that either

- have no further daughters,
- are identical in size,shape (so that grand-daughters are safely fit inside)

Adding daughter volumes to the World

```
// Now add a blue cube to the world
    G4Box *asolidBox;
    G4LogicalVolume *alogicBox;
    G4VPhysicalVolume *aphysiBox;
    G4VisAttributes *visatt;
```


magnetic fields

```
asolidBox = new G4Box("BlueCube",Side/2.,Side/2.,Side/2.);
    alogicBox = new G4LogicalVolume(asolidBox, CubeMaterial, "LBlueCube", 0, 0, 0);
    // the cube is blue
    visatt = new G4VisAttributes( G4Colour(0.0, 0.0, 1.0) );
    visatt->SetVisibility(true);
    alogicBox->SetVisAttributes( visatt );
    aphysiBox = new G4PVPlacement(
        0,
        alogicBox, // the blue cube logical volume
        "PBlueCube", // the physical blue cube name
        logicWorld, // its mother volume
        false, // no boolean operations
        0);
            // copy number
```

 last workshop \#4

W3: Geometries !

GDML: exportation / importation

- Geometries can be saved in XML (gdml) files
- XML is widely used in computer applications since:
\Rightarrow it is human readable (html like)
\Rightarrow it is structured, with ways to check the schema is correct \Rightarrow the schema is defined consistently using xml language! \Rightarrow GDML* is an extension for 3D geometries
- It is a format to exchange geometries between framework
- BUT it could also be used to define new geometries human readable! (without C++ knowledge)
- GDML is also the bridge to import CAD files ...
http:/ / geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch04.html\#sect.Geom.Solids
* Geometry Description Markup Language
\Leftrightarrow see section 4.1.2.4. Tessellated Solids

GDML: exportation / importation

define gdml schema

<define/>
<materials> $<\infty</$ materials>
$<$ solids>

<box lunit="mm" name=" ParisPW_2-bare" $x={ }^{\prime \prime} 20 \theta^{\prime \prime} \quad y={ }^{\prime \prime} 20 \theta^{* \prime} \quad 2={ }^{* \prime} 100 \theta^{\prime \prime} />$
$</$ solids $>$
<structure>
<volume name="PW: $\theta^{\prime \prime}>$ Logical Volume
$<$ materialref ref="LaBr3*" $/>$ $<$ solidref ref="LaBr3" $/>$
$</$ volume>
<volume name="PW:1"> <materialref ref="NaI" $/>$ $<$ solidref ref="NaI" / >
$</$ volume>
<volume name="ParisPW 2-bare"> $<$ materialref ref="Aīr" $/>$
<solidref ref="ParisPW_2-bare" $/>$
Physical Volume <physvol name= ${ }^{*} \mathrm{PW}: \theta^{\prime \prime}>$
<volumeref ref="PW: $0^{\circ "} />$
 $</$ physvol>
<physvol name=" $\mathrm{PW}: 1^{* *}>$
<volumeref ref="PW: 1 " $/>$
 </physvol>

$$
</ \text { volume> }
$$

$</$ structure
<setup name="Default" version="1.0">
<world ref="ParisPW__2-bare" $/>$
$</$ setup $>$
Translation, rotation if any
$</ \mathrm{gdm}$ l $>$
the top volume, the World !
http://lcgapp.cern.ch/project/simu/framework/GDML/doc/GDMLmanual.pdf

GDML: exporkation / imporkation

define gdml schema

 <isotope \(\mathrm{N}=\) "138" \(\mathrm{Z}=\) " 57 " name="La138">
 <atom unit="g/mole" value="137.907"/>
 </isotope>
 <isotope N="139" Z="57" name="La139">
 <atom unit="g/mole" value="138.906"/>
 </isotope>
 <element name="Lanthanum">
 <fraction n="0.0009" ref="La138"/>
 <fraction n="0.9991" ref="La139"/>
 </element>
 <structure>
 <volume name="PW: \(0^{\circ}\) Logical Volume
 <materialref ref="LaBr3"/>
 <solidref ref="LaBr3"/>
 \(</\) volume \(>\)
 <volume name="PW:1">
 <materialref ref="NaI"/>
 <solidref ref="NaI" / >
 \(<\) /volume>
 <volume name="ParisPW_2-bare">
 <materialref ref="Air"/>
 <solidref ref="ParisPW_2-bare"/>
 Physical Volume
 <physvol name="PW: \(\theta^{">}>\)
 <volumeref ref="PW: \(\theta^{\prime \prime} />\)
 <position name="PW: 0_pos" unit="mm" \(x=" 0\) " \(y=" 0 " \mathrm{z}={ }^{\prime \prime} 25.9^{\prime \prime} />\)
 </physvol>
 <physvol name="PW: \(1^{" *}>\)
 <volumeref ref="PW:1"/>
 <position name="PW:1_pos" unit="mm" x="0"y="0" z="127.5"/>
 </physvol>
 \(<\) /volume>
 \(</\) structure>
 <setup name="Default" version="1.0">
 <world ref="ParisPW_2-bare"/>
 \(</\) setup \(>\)

GDML: exportation / importation

define gdml schema

<define/>
<materials> $<\infty</$ materials>
$<$ solids>

<box lunit="mm" name=" ParisPW_2-bare" $x={ }^{\prime \prime} 20 \theta^{\prime \prime} \quad y={ }^{\prime \prime} 20 \theta^{* \prime} \quad 2={ }^{* \prime} 100 \theta^{\prime \prime} />$
$</$ solids $>$
<structure>
<volume name="PW: $\theta^{\prime \prime}>$ Logical Volume
$<$ materialref ref="LaBr3*" $/>$ $<$ solidref ref="LaBr3" $/>$
$</$ volume>
<volume name="PW:1"> <materialref ref="NaI" $/>$ $<$ solidref ref="NaI" / >
$</$ volume>
<volume name="ParisPW 2-bare"> $<$ materialref ref="Aīr" $/>$
<solidref ref="ParisPW_2-bare" $/>$
Physical Volume <physvol name= ${ }^{*} \mathrm{PW}: \theta^{\prime \prime}>$
<volumeref ref="PW: $0^{\circ "} />$
 $</$ physvol>
<physvol name=" $\mathrm{PW}: 1^{* *}>$
<volumeref ref="PW: 1 " $/>$
 </physvol>

$$
</ \text { volume> }
$$

$</$ structure
<setup name="Default" version="1.0">
<world ref="ParisPW__2-bare" $/>$
$</$ setup $>$
Translation, rotation if any
$</ \mathrm{gdm}$ l $>$
the top volume, the World !
http://lcgapp.cern.ch/project/simu/framework/GDML/doc/GDMLmanual.pdf

GDML: exportation / importation

export the world from G4 into a gdml file
\#include "G4GDMLParser.hh"

G4VPhysicalVolume *world; // this is the world
...
G4GDMLParser parser;
// write
parser.Write("myGDML.gdml",world,false);
import the world into G4 from a gdml file
\#include "G4GDMLParser.hh"

G4VPhysicalVolume *world; // this is the world G4GDMLParser parser; parser.Read("myGDML.gdml",false);
world = parser.GetWorldVolume();

Attributes (colors, sensitivity ...) are not saved in gdml files ... there are way to pass the information

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010 Type ? for help. Commands must be C++ statements. Enclose multiple statements between \{ \}.
Info in TGeoManager::Import: Reading Info in TGeoManager::TGeoManager: Geometry GDMLImport, Geometry imported fro Info in TGeoManager::SetTopVolume: Top volume is CParisPW_2. Master volume i Info in <TGeoNavigator:: BuildCaches: --- Maximum geometry depth set to 100 Info in TGeoManager::CheckGeometry: Fixing runtime shapes...
Info in TGeoManager::CheckGeometry: ...Nothing to fix
Info in TGeoManager::CheckGeometry: ...Nothing to fix
Info in TGeoManager::CloseGeometry: Counting nodes...
Info in <TGeoManager:: Voxelize>: Voxelizing..
Info in TGeoManager::CloseGeometry: Building cache...
Info in <TGeoManager:: CountLevels>: max level =1, max placements $=2$
Info in TGeoManager::CloseGeometry: 28 nodes/ 4 volume UID's in Geometry imp
(class TGeoManager $*$) 0×7 f99e1869e00
root [1] gGeoManager->GetTopVolume()->Draw("ogl")
Info in TCanvas::MakeDefCanvas: created default TCanvas with name c1

The user's applicalion

TODO List

- Build the following setup:

The World is composed of air.
The setup is a target composed of lead, placed at center of the World:
target [box 10 cm cube]
And three detectors composed of BGO, placed at 60 cm from the target:
a box [10 cm square, 5 cm depth] in the beam direction
a tube detector 5 cm radius, 10 cm long rotated by 60 degrees with respect to the beam direction
a trapezoid detector, face 5 cm 2, back 15 cm 2 depth 10 cm rotated by -60 degrees with respect to the beam direction

- Modify the main program to save the geometry in a .gdml file load the geometry in root and check it
- Built your own detector !

The user's application
 ene tree | Help | History |

 ewer-0 (OpenGLStoredQt) |v TubsDetector [2]

In root, after gdml exportation
In G4, using QT

We have seen:

- how to build a geometry
\Leftrightarrow from isotopes to materials
\Leftrightarrow from shapes by logical volumes to physical volumes
- how to use check the geometry validity
\Leftrightarrow command line
\Rightarrow using Graphical tools including export / import
- More information could be added to geometries
\Leftrightarrow one can make some sensitive
\Rightarrow copy number is important
see last workshop!

[^0]: // Germanium isotopes
 G4Isotope* Ge70 = new G4Isotope(name="Ge70", 32, 70, 69.9242*g/mole); G4Isotope* Ge72 = new G4Isotope(name="Ge72", 32, 72, 71.9221*g/mole); G4Isotope* Ge73 = new G4Isotope(name="Ge73", 32, 73, 72.9235*g/mole); G4Isotope* Ge74 = new G4Isotope(name="Ge74", 32, 74, $73.9212 * g / \mathrm{mole}$); G4Isotope* Ge76 = new G4Isotope(name="Ge76", 32, 76, $75.9214 * \mathrm{~g} / \mathrm{mole}$); // germanium defined via its isotopes
 G4Element* elGe = new G4Element(name="Germanium", symbol="Ge", 5);
 elGe->AddIsotope(Ge70, 0.2123);
 elGe->AddIsotope(Ge72, 0.2766);
 elGe->AddIsotope(Ge73, 0.0773);
 elGe->AddIsotope(Ge74, 0.3594);
 elGe->AddIsotope(Ge76, 0.0744);

 Fraction of atoms per volumes
 \square

