
Geant4: A Simulation toolkit
O. Stézowski and M. Pinto

With many thanks to the Geant4 community !!!!

The roadmap of the week

W1: installation / running a G4 application

W2: Primary generator, GPS, physics list

NOW, HOW does it really work ?

W4: Sensitive detectors / user’s actions

W3: Geometries !

 w1: 3:00, Monday

 w2: 3:00, Tuesday
 w3: 4:30, Wednesday
 w4: 3:00, Thursday

2

W1: installation / running a G4 application

Geant4 installation, the cmake tool

The user’s application

the bricks to build an application

compilation using cmake, requirements

playing with the simulation

3

W1: installation / running a G4 application

Geant4 installation, the cmake tool

User’s application

the bricks to build an application

compilation using cmake, requirements

playing with the simulation

4

G4 installation, the cmake tool

5

G4 installation, the cmake tool

6

Installation from sources*:
•no need to be super-user, root, admin ☛ autonomy
•help to customize the installation to match needs
•it requires configuration, compilation and installation

adapt the package
to your PC compile it make it

available

➠ ➠ ➠

* pre-compiled package are also available on the G4 site

CMake do the job
http://www.cmake.org

[G4 recommended and officially supported]

not covered here

You have to have it installed on you machine !

http://www.cmake.org
http://www.cmake.org

G4 installation, the cmake tool

1

2

3
to get the G4 package

G4 installation, the cmake tool
unzip, untar ... of course in /home/

this is the file
CMake
needs !

so
ur

ce
 fi

le
s

G4 installation, the cmake tool

 Out of source building
•keep sources clean
•allows several installations

1. Configuration

And now, full G4 installation in three steps

G4 installation, the cmake tool

 Out of source building
•keep sources clean
•allows several installations

1. Configuration

And now, full G4 installation in three steps

G4 installation, the cmake tool

 Out of source building
•keep sources clean
•allows several installations

1. Configuration

And now, full G4 installation in three steps

G4 is made of
modules !

G4 installation, the cmake tool

 Out of source building
•keep sources clean
•allows several installations

1. Configuration

And now, full G4 installation in three steps

G4 is made of
modules !

Data needed @ running time

G4 installation, the cmake tool

2. Compilation 3. Installation

-DOPTION=VALUE -DGEANT4_INSTALL_DATA=ON -DGEANT4_USE_QT=ON

Core components:
all needed and built

Additional modules:
options [external packages]

...

Note: Modules are also shared libraries ➠

NOT mandatory, the building directory could be enough

For this workshop, two versions installed
cmake -DGEANT4_INSTALL_DATA=ON -DGEANT4_USE_OPENGL_X11=ON -DGEANT4_USE_RAYTRACER_X11=ON ../geant4.9.6.p02
-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
.
-- Found X11: /usr/lib/i386-linux-gnu/libX11.so
-- Found OpenGL: /usr/lib/i386-linux-gnu/libGL.so
-- Configuring download of missing dataset G4NDL (4.2)
-- Configuring download of missing dataset G4EMLOW (6.32)
.
-- The following Geant4 features are enabled:
GEANT4_BUILD_CXXSTD: Compiling against C++ Standard 'c++98'
GEANT4_USE_SYSTEM_EXPAT: Use system EXPAT library
GEANT4_USE_RAYTRACER_X11: Build RayTracer driver with X11 support
GEANT4_USE_OPENGL_X11: Build Geant4 OpenGL driver with X11 support

-- Configuring done
-- Generating done
-- Build files have been written to: /group/formateurs/stezowski/geant4.9.6.p02-build

cmake -DGEANT4_INSTALL_DATA=ON -DGEANT4_USE_OPENGL_X11=ON -DGEANT4_USE_RAYTRACER_X11=ON
 -DGEANT4_USE_GDML=ON -DGEANT4_USE_QT=ON ../geant4.9.6.p02

-- The following Geant4 features are enabled:
GEANT4_BUILD_CXXSTD: Compiling against C++ Standard 'c++98'
GEANT4_USE_SYSTEM_EXPAT: Use system EXPAT library
GEANT4_USE_GDML: Build Geant4 with GDML support
GEANT4_USE_QT: Build Geant4 with Qt support
GEANT4_USE_RAYTRACER_X11: Build RayTracer driver with X11 support
GEANT4_USE_OPENGL_X11: Build Geant4 OpenGL driver with X11 support

-- Configuring done
-- Generating done
-- Build files have been written to: /group/formateurs/stezowski/geant4.9.6.p02-build-full

GDML ☛ W3
QT ☛ W1

G4 installation, the cmake tool

TODO List

Install Geant4 the same way in your home directory !

• first, the ‘core’ version
• then the more complete one*

*see here for a full description of the available options
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch02s03.html

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch02s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch02s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch02s03.html
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/ch02s03.html

W1: installation / running a G4 application

Geant4 installation, the cmake tool

User’s application

the bricks to build an application

compilation using cmake, requirements

playing with the simulation

13

#ifndef _MyBase_hh
#define _MyBase_hh

#include "VBase.hh"

class MyBase : public VBase
{
protected:
 AnotherObject _OO;

public:
 MyBase(float x, float y, AnObject o, AnotherObject oo);
 virtual ~ MyBase();

 // Reset MyBase
 virtual void Reset();

 // Really do the job of transforming _O into _OO
 // moving it at a different position
 virtual void Transform(float xnew, float ynew);
};

#endif

The user’s application

14

#ifndef _VBase_hh
#define _VBase_hh

class VBase
{
protected:
 float _X;
 float _Y;
 AnObject _O;

public:
 VBase(float x, float y, AnObject o);
 virtual ~VBase();

 //! Reset VBase
 virtual void Reset();

 //! pure virtual method, HAS to be implemented
 virtual void Transform(float xnew, float ynew) = 0;
};

#endif

#include "VBase.hh"

VBase::VBase(float x, float y, AnObject o)
{
 _X = x;
 _Y = y;
 _O = o;
}

void VBase::Reset()
{
 _X = _Y = 0;
 _O = 0;
}

C++ (Object Oriented) into the game -

#include MyBase.hh"

MyBase::MyBase(float x, float y, AnObject o, AnotherObject oo) :
VBase(x,y,o)

{
 _OO = oo;
}

void MyBase::Reset()
{
 VBase::Reset(); _OO = 0;
}

void MyBase::Transform(float xnew, float ynew)
{
 AnObject o_tmp = _O;

 _O = _OO;
 _OO = o_tmp;

 _X = xnew; _Y = ynew;

 // ... something like _O.Show() and _OO.Hide()
}

VBase.hh MyBase.hh

VBase.cc

MyBase.cc

inherits
from

ex: classes that transform objects

in
cl
ud

e
fil

e
so

ur
ce

 fi
le

data members⎬

⎬methods to change data values

⎬ constructor,
to init

#ifndef _MyBase_hh
#define _MyBase_hh

#include "VBase.hh"

class MyBase : public VBase
{
protected:
 AnotherObject _OO;

public:
 MyBase(float x, float y, AnObject o, AnotherObject oo);
 virtual ~ MyBase();

 // Reset MyBase
 virtual void Reset();

 // Really do the job of transforming _O into _OO
 // moving it at a different position
 virtual void Transform(float xnew, float ynew);
};

#endif

The user’s application

14

#ifndef _VBase_hh
#define _VBase_hh

class VBase
{
protected:
 float _X;
 float _Y;
 AnObject _O;

public:
 VBase(float x, float y, AnObject o);
 virtual ~VBase();

 //! Reset VBase
 virtual void Reset();

 //! pure virtual method, HAS to be implemented
 virtual void Transform(float xnew, float ynew) = 0;
};

#endif

#include "VBase.hh"

VBase::VBase(float x, float y, AnObject o)
{
 _X = x;
 _Y = y;
 _O = o;
}

void VBase::Reset()
{
 _X = _Y = 0;
 _O = 0;
}

C++ (Object Oriented) into the game -

#include MyBase.hh"

MyBase::MyBase(float x, float y, AnObject o, AnotherObject oo) :
VBase(x,y,o)

{
 _OO = oo;
}

void MyBase::Reset()
{
 VBase::Reset(); _OO = 0;
}

void MyBase::Transform(float xnew, float ynew)
{
 AnObject o_tmp = _O;

 _O = _OO;
 _OO = o_tmp;

 _X = xnew; _Y = ynew;

 // ... something like _O.Show() and _OO.Hide()
}

VBase.hh MyBase.hh

VBase.cc

MyBase.cc

inherits
from

ex: classes that transform objects

in
cl
ud

e
fil

e
so

ur
ce

 fi
le

data members⎬

⎬methods to change data values

⎬ constructor,
to init

• Knowing VBase interface enough to play with
all kind of objects inheriting from VBase

• At running time the ‘right’ methods are called

The user’s application

15

Building an application requires to put together 3 mandatory bricks*
the detector construction - the description of the physics - the primary generator

The user’s application

15

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

the detector construction - the description of the physics - the primary generator

The user’s application

15

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList
{
// the virtual method to be implemented by the user

void ConstructParticle();
// the virtual method to be implemented by the user

void ConstructProcess();
// the virtual method to be implemented by the user !

void SetCuts();
};

the detector construction - the description of the physics - the primary generator

The user’s application

15

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

class AGammaGun : public G4VUserPrimaryGeneratorAction
{
// the virtual method to be implemented by the user
! virtual void GeneratePrimaries(G4Event* anEvent);
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList
{
// the virtual method to be implemented by the user

void ConstructParticle();
// the virtual method to be implemented by the user

void ConstructProcess();
// the virtual method to be implemented by the user !

void SetCuts();
};

the detector construction - the description of the physics - the primary generator

The user’s application

15

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

class AGammaGun : public G4VUserPrimaryGeneratorAction
{
// the virtual method to be implemented by the user
! virtual void GeneratePrimaries(G4Event* anEvent);
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList
{
// the virtual method to be implemented by the user

void ConstructParticle();
// the virtual method to be implemented by the user

void ConstructProcess();
// the virtual method to be implemented by the user !

void SetCuts();
};

the detector construction - the description of the physics - the primary generator

// The User's main program to control / run simulations
int main(int argc, char** argv)
{
// Construct the run manager, necessary for G4 kernel to control everything
! G4RunManager *theRunManager = new G4RunManager();
!
// Then add mandatory initialization G4 classes provided by the USER
! // detector construction
! // physics list
! // initialisation of the generator

 theRunManager->SetUserInitialization(new ARedSphereConstuction());
 theRunManager->SetUserInitialization(new AnElectroMagneticPhysicsList());
 theRunManager->SetUserAction(new AGammaGun());

.

.
! return 0;
}

The user’s application

15

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

class AGammaGun : public G4VUserPrimaryGeneratorAction
{
// the virtual method to be implemented by the user
! virtual void GeneratePrimaries(G4Event* anEvent);
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList
{
// the virtual method to be implemented by the user

void ConstructParticle();
// the virtual method to be implemented by the user

void ConstructProcess();
// the virtual method to be implemented by the user !

void SetCuts();
};

the detector construction - the description of the physics - the primary generator

+
many other hooks

but
not mandatory

// The User's main program to control / run simulations
int main(int argc, char** argv)
{
// Construct the run manager, necessary for G4 kernel to control everything
! G4RunManager *theRunManager = new G4RunManager();
!
// Then add mandatory initialization G4 classes provided by the USER
! // detector construction
! // physics list
! // initialisation of the generator

 theRunManager->SetUserInitialization(new ARedSphereConstuction());
 theRunManager->SetUserInitialization(new AnElectroMagneticPhysicsList());
 theRunManager->SetUserAction(new AGammaGun());

.

.
! return 0;
}

W1: installation / running a G4 application

Geant4 installation, the cmake tool

User’s application

the bricks to build an application

compilation using cmake, requirements

playing with the simulation

16

The user’s application

17

Setup the project
project(W1_LIO)

#--
Find Geant4 package, activating all available UI and Vis drivers by default
You can set WITH_GEANT4_UIVIS to OFF via the command line or ccmake/cmake-gui
to build a batch mode only executable
option(WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if(WITH_GEANT4_UIVIS)

find_package(Geant4 REQUIRED ui_all vis_all)
else()

find_package(Geant4 REQUIRED)
endif()

#--
Setup Geant4 include directories and compile definitions
include(${Geant4_USE_FILE})
include_directories(${PROJECT_SOURCE_DIR}/csrc)

#--
Locate sources and headers for this project.

set(PROJECT_SRC

)

set(PROJECT_HEADER

)

#--
Add the executable, and link it to the Geant4 libraries
add_executable(LIO_W1 LIO_W1.cc ${PROJECT_SRC} ${PROJECT_HEADER})
#
target_link_libraries(LIO_W1 ${Geant4_LIBRARIES} ${EXTRA_LIB})

#--
Install the executable to 'bin' directory under CMAKE_INSTALL_PREFIX
#
install(TARGETS LIO_W1 DESTINATION bin)

your application’s name

to be sure what is installed
is enough to build
your application

where is the G4 version used

this is the place where
you tell cmake what files are

part of your application

it fully defines the main/exe

place to install your
application (if required)

your CMakelists.txt

The user’s application

18

Setup the project
project(W1_LIO)

#--
Find Geant4 package, activating all available UI and Vis drivers by default
You can set WITH_GEANT4_UIVIS to OFF via the command line or ccmake/cmake-gui
to build a batch mode only executable
option(WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if(WITH_GEANT4_UIVIS)

find_package(Geant4 REQUIRED ui_all vis_all)
else()

find_package(Geant4 REQUIRED)
endif()

#--
Setup Geant4 include directories and compile definitions
include(${Geant4_USE_FILE})
include_directories(${PROJECT_SOURCE_DIR}/csrc)

#--
Locate sources and headers for this project.

set(PROJECT_SRC

)

set(PROJECT_HEADER

)

#--
Add the executable, and link it to the Geant4 libraries
add_executable(LIO_W1 LIO_W1.cc ${PROJECT_SRC} ${PROJECT_HEADER})
#
target_link_libraries(LIO_W1 ${Geant4_LIBRARIES} ${EXTRA_LIB})

#--
Install the executable to 'bin' directory under CMAKE_INSTALL_PREFIX
#
install(TARGETS LIO_W1 DESTINATION bin)

your application’s name

to be sure what is installed
is enough to build
your application

where is the G4 version used

this is the place where
you tell cmake what files are

part of your application

it fully defines the main/exe

place to install your
application (if required)

+ add the header files
+ add the source files

The user’s application

19

To build your application

mkdir build9.6-p02
cd build9.6-p02
cmake -DGeant4_DIR=/path/to/the/G4buildingDirYouWant ../
make -j2
cd ..

To run it

./build9.6-p02/the_exe_you_have_defined_its_name

The user’s application

20

TODO List

Copy the first example in your directory
cp -r /group/formateurs/xxxx/LIO_W1 LIO_W1_MyWork

Have a look in the directory, identify the various files
Build the application [in a sub-directory called build9.6-p02]:

• using the ‘core’ G4 installed
• you may need to modify some files !
• run a GeantinoGun in a Red Sphere [./build9.6-p02/LIO_W1]
• run a GammaGun in a Red Sphere
• run a ProtonGun in a Blue Cube

30 minutes

W1: installation / running a G4 application

Geant4 installation, the cmake tool

User’s application

the bricks to build an application

compilation using cmake, requirements

playing with the simulation

21

The user’s application

22

TODO List

Play with the simulation using the command line:
•run the application and type help
•have a look at the commands, try for instance:

/units/list
/process/list and /process/dump -
/run/setCut 0.1 mm and /run/setCutForAGivenParticle e- 10 um
/material/g4/printElement and /material/g4/printMaterial
/particle/list and /gun/List
...

•check geometry with /vis/drawTree
•all commands could be in a file - see visGL.mac
•run it with /control/execute visGL.mac
•to start a run with 100 particles /run/beamOn 100

The user’s application

23

TODO List

 HepRep:
 Requires to dump the geometry and traces in a .heprep[.gz] file
 No need of specific G4 modules
 Requires a java program HepRApp.jar to read back the file:

 /group/tmp_softs/jre1.6.0_33/bin/java -Xms512M -Xmx1024M -jar HepRApp.jar
 There is a version of HepRApp.jar in /group/formateurs/xxxx/utilities
 Run the visHepRep.mac macro in the application
 Browse the file using HepRApp

 Advanced features to check geometry, see and interact

The user’s application

24

TODO List
 Qt:

• It allows to see geometries, traces and run simulations
• It requires to build G4 with Qt. In you application, create a new directory

 (mkdir build9.6-p02-full) build and run !
• try also with G4 standard examples:

 ExampleN05
 Simplified BaBar calorimeter with EM shower parametrisation
 run and execute in Qt vis.mac

 ExampleB3
 Schematic Positron Emitted Tomography system + Radioactive source
 run + /run/beamOn 10

 extended/optical/Lxe
 examples of generic optical processes simulation setups
 /run/initialize then /run/beamOn 10

 Advanced features to check geometry, see and interact

The user’s application

25

Play with
geometry

Output G4

G4 help on commands

type commands

interact with the geometry

Conclusions of W1

26

We have seen

•How to install G4 using CMake
•How to customize / build / run the user’s application
•The commands called C++ methods using Messengers

➥ see W2 to know how to do it

